
[Alka, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[698-702]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Enhanced Dynamic Schema Binding Using Hashing Algorithm

Ms. Alka1, Mr. Mahesh Singh2
1Student, AITM, INDIA

2Asst. Professor, Department of Computer Science Engineering, AITM, INDIA

alka2513@gmail.com,

Abstract
The Data Meta Structure employs a database to persist agent and tag information. The tables and fields

contain are known as the database schema. The attributes present in these tables are the basis of queries from the

users. Hence, there may arise, a need for adding new fields to existing tables or adding new tables to support new

functionalities iqueries. These additions to the database are known as a schema update. This paper describes logic

that enables dynamic update of the schema through the Dynamic Schema Binding in the Data Meta Structures.

Keywords: DataBase Schema, Message Encryption, Schema Updates, Test plan

 Introduction
The Dynamic Schema Binding did not

provide any support for migrating from older schema

versions to newer ones using dynamic key

generation. This meant that users running code

expecting a newer schema version than the one

present in the database would not be able to exploit

the extended functionality that the newer schema was

intended to provide(as the database simply did not

contain the fields/tables added as part of newer

schema).Many users, potentially using varied schema

versions in their code, can cause security issues.

Initializing databases to update their schema would

result in the undesired outcome of all the data being

erased and data theft issue is always there. Hence,

there is a need for a systematic way of addressing

schema mismatches and if required, updating the

schema with no loss of existing data and to avoid

unauthorized access. Information and status would,

therefore, augment to the usability of the application.

The objective of this paper is to design and

implement an update logic enabling dynamic schema

migration, implementing a frame work that facilitated

the addition schema updating code and designing an

intuitive and informative interface to the database

agent and to insecure the security with the help of

dynamic schema generation using security algorithm.

Design
Background

Schema update support is a problem that is

commonly encountered in applications that employ

data to support business logic. The primary issue

faced in such scenarios is the need for supporting

newdata isanalysis/descisionswhich,inturn,potentially

require new tables/fields to be added to the existing

schema. This is especially true for distributed entities

connecting to a single database. Resolving schema

mismatches under such circumstances is a non-trivial

problem. Another challenge faced by architects and

developers of such systems is to support the update of

schema dynamically (i.e. while the application is

running) without causing any loss of existing data

and the algorithm mentioned below to generate the

dynamic schema models.

In order to address the database vulnerabilities,

algorithm based on stream ciper theory has been

proposed. A pseudorandom keystream is used to

generate ciper text by utilizing the Substitution box

values. This encryption algorithm is based on XOR

operation and the steps for the algorithm are

described below to generate the dynamic schema

models.

i. Calculate Passkey Numeral for Encryption

for Schema Structures:

 Random number is generated

between 1024 and 999999.

http://www.ijesrt.com/
alka2513@gmail.com,

[Alka, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[698-702]

 Length of number is calculated.

 Sum of ASCII value of digits of

number are calculated.

Thus, Passkey Numeral= Numeral Length + Sum of

ASCII value of digits.

ii. Calculate a0, a1, a2 and a3 parameters:

 a1= Sum of digits at odd positions of

passkey numeral

 a2= Product of digits of passkey

numeral

 a3= (Passkey numeral) mod (256)

iii Calculate b0, b1,b2 and b3 parameters:

In order to compute b0, b1, b2 and b3 values,

encryption parameters EP1, EP2, EP3 and EP4 are

required which are computed using Table 5.1:

Table 5.1: Encryption Parameters

iv Calculate c0,c1,c2 and c3 parameters:

c0 = ((EP1[b2] XOR EP2[b2]) * a0) + b2 (5)

c1 = ((EP1[b1] XOR EP3[b1]) * a1) + b1 (6)

c2 = ((EP1[b0] XOR EP4[b0]) * a2) + b0 (7)

c3 = ((EP2[b3] XOR EP3[b3]) * a3) +b3 (8)

v Calculate Substitution box (S-box) values using

 Table 5.2

Table 5.2: S-Box values

vi Calculate Message parameter:

Message Parameter = Passkey Numeral (obtained in

step i.) + Randomly generated key between 1024 and

9999 + Average of a0, a1, a2 and a3 parameters

(obtained in step ii.) + Average of b0, b1, b2 and b3

parameters (obtained in step iii.) + Average of c0,

c1, c2 and c3 parameters (obtained in step iv.)

vii Message Encryption

 Reverse the plaintext to be encrypted to

obtain Partial Message Encryption 1

(PME1).

 Perform PME1 XOR S-box [index]

(obtained in step E) operation to obtain

Partial Message Encryption 2 (PME2).

 Perform PME2 XOR Message

parameter (obtained in step F) operation

to compute Partial Message Encryption

3 (PME3).

 Reverse hex encoded value of PME3 to

compute Partial Message Encryption 4

(PME4) which is the resultant encrypted

text.

EP1

parameter

EP2

parameter

EP3

parameter

EP4

parameter

0 a0 XOR a1 EP1 + 15 a2 XOR a3 EP3 + 55

1 a0 XOR a2 EP1 + 25 a1 XOR a3 EP3 + 65

2 a0 XOR a3 EP1 + 35 a1 XOR a2 EP3 + 75

3 a2 XOR a3 EP1 + 45 a1 XOR a3 EP3 + 85

 0 1 2 3

0

(EP1[b0]

XOR c0) *

c0

(EP1[b1]

XOR c1) *

c0

(EP1[b2]

XOR c2) *

c0

(EP1[b3]

XOR c3) *

c0

1

(EP2[b0]

XOR c0) *

c1

(EP2[b1]

XOR c1) *

c1

(EP2[b2]

XOR c2) *

c1

(EP2[b3]

XOR c3) *

c1

2

(EP3[b0]

XOR c0) *

c2

(EP3[b1]

XOR c1) *

c2

(EP3[b2]

XOR c2) *

c2

(EP3[b3]

XOR c3) *

c2

3

(EP4[b0]

XOR c0) *

c3

(EP4[b1]

XOR c1) *

c3

(EP4[b2]

XOR c2) *

c3

(EP4[b3]

XOR c3) *

c3

http://www.ijesrt.com/

[Alka, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[698-702]

Requirement
Display more information pertaining to

schema version, server and port running the

databases and the status of the connection.Design

now messages and the logic to determine database

status based on schema mismatches.Design and the

implement logic to perform schema update.

High level Design

In order to detect schema mismatches and

keep track of the general working of the database a

status attribute was included in the Dynamic Schema

Binding. To retrieve this information from the

Dynamic Schema Binding, two new messages were

incorporated into the application. The database panel

would query the Dynamic Schema Binding for the

status of the database by sending a DBStatusRequest

message. On receiving this message, the Dynamic

Schema Binding would check for any schema

mismatches or other anomalous condition in the

database. The Dynamic Schema Binding would then

compose a DBStatusUpdate message reflecting the

database status and the same to the database panel.

Status thus acquired would be displayed to the user

by the panel

The version of schema is persisted in the

database within the TagCentricAppInfo table. We

will refer to this as the database schema version. The

schema version is also hard-coded into the code as a

Dynamic Schema Binding attribute. This is referred

to as the code schema version and indicates the

format of schema that the code expects. Whenever a

Dynamic Schema Binding connects to a database, the

database schema version can be read and compare

with the code schema version of that Dynamic

Schema Binding. A mismatch is detected if these two

schema version are not equal.

Whenever a schema update is issued by the user, the

database panel should forward the command to the

Dynamic Schema Binding. The update command is

embedded into the DBInitialize message. A flag in

the DBInitialize is set to indicate to the Dynamic

Schema Binding that an update and not an initialize

was required. Once the update logic is executed, the

Dynamic Schema Binding multicasts a

DBStatusUpdate message to all the database panels

to indicate the new schema version and status.

Detailed Design

Design of update architecture

The update logic architecture was designed based on

the schema version detected from the database. The

crucial part of the design was to decide the course of

action for different scenarios of schema mismatch.

The following design was adopted to deal with the

various scenarios.

If no version was read from the database, it would be

a sign that the database was not populated with the

middleware schema. Hence under such a scenario the

user is requested to initialize the database to set up

the necessary tables and the data for the application

to be operational.

If the database schema version is found to be higher

than the one present in the code, the user is allowed

to access the database and operate in a normal

fashion. The reason for implementing such a strategy

is to provide backward compatibility for users

employing code with old schemas. The user is,

however, informed that s/he processes old code. If,

on the other hand, the code schema version is

detected to be higher or newer than the one read from

the database, the user is forced to either update the

schema or initialize the resulting in newer schema

being populated in the database. Such an action is a

necessary as the some queries may need the

fields/tables belonging to the new schema in order to

execute.

To communicate the update command issued by the

user or the version, database information and

database status, separate messages were added in to

the application. Whenever a database agent is

launched or alternately whenever a database panel

connected to an already launched agent,the panel

would send a DBStatusRequest to the Dynamic

Schema Binding. The Dynamic Schema Binding, on

receiving such a request would compose a

DBStatusUpdate message to the concerned panel.

This update message is designed (the design of the

messages is covered later) to contain all the relevant

http://www.ijesrt.com/

[Alka, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[698-702]

information which is then displayed to the user by

database panel.

In case a user needs an update and issues the same,

the panel sends a DBInitialize message to the

Dynamic Schema Binding. This message is designed

to indicate the nature of the command issued by the

user (initialize or update). On receiving the

DBInitialize the Dynamic Schema Binding ascertains

the course of action to be taken. Once the update is

completed, the agent composes a DBStatusUpdate

message to indicate the latest attributes of the

database. This time, however, the Dynamic Schema

Binding publishes or multi-casts this message to all

the existing panels so as to maintain a unified and

coherent view of the database for all the users.

Design of update logic

The user in made invoke the update logic the

current code schema version is found to be higher

than that of the database schema version. The update

logic is designed to update to accept a schema

version number. This number is the database schema

version. Since the code schema version is manually

updated by the developers whenever additions to the

schema are made, the code is cognizant of the latest

version that it expects in the database. Hence , when

the old schema number detected in the database is

passed to the update logic it updates the schema in

cycles till the current version of schema resides in the

database.

The updating of schema is done one step at a time. In

each step the current schema is converted to the next

higher one. Therefore , the number of such steps or

cycles executed depends on the difference in schema

version in database and code. For instance if the code

schema version was 4 and the database schema

version was 1,three steps would be required to update

the schema to version 4. Hence, the update logic

works for any version of schema no matter how old it

is.

Design of user interface

The user Interface, incorporated into the database

administration panel was designed to be more

informative to the user. Separate object were used to

indicate the various attributes of the database. The

user interface is designed to show the version

number(the database version number is to be

specific), the JDBC connection URL (to indicate the

type, machine and the port of the database) and the

status of the database connection. The status field in

particular was designed to display information that

indicate problems, if any and the next step to be taken

by the user. The interface was also designed to

disable certain operations under certain status to

avoid inconsistent results. For instance, a user is not

allowed to query the database whenever an update is

deemed necessary etc.

Design of messages

The DBStatusRequest was designed to simplify

query for the database status. The DbStatusUpdate

was designed to contain attributes necessary to

display information on the panel. The attributes

incorporated into the message were version,

connection URL and status. Six different status and

their scenarios were also included in the

DBStatusUpdate. The message also contained the

necessary mechanisms to read or write these

attributes.

To indicate the operation requested by the user, the

DBInitialize message had an additional flag added to

it. The flag is set true if the user requests an update.

On receiving this message, the Dynamic Schema

Binding can access the flag to ascertain if an update

operation is required. If not the Dynamic Schema

Binding proceeds to initialize the database.

Implementation
The update logic is implemented as a block

of switch case statements. The switch statement takes

the database schema version as argument. The case

statements start with 1 through to the least version.

The case statements lack the break command and

hence, the flow of execution flows through till the

last case statements irrespective of where they start.

Hence, the database is updated to the latest version

once the update logic is finished executing. Each case

statement makes a call to it’s respective convert

schema method. The convert schema methods follow

a common nomenclature of convertSchemaxtoy

where x is the older version and y is the next higher

schema version. For example, convertSchema2to3

converts the database from schema version 2 to 3. In

addition to adding to the code for schema update in

the convert schema fucntions, the same is the

incorporated into the initialization method as well.

After each convert schema statements, the case block

also updates the schema version number in the

TagCentricApplInfo to reflect the update in schema.

The user interface in database panel in

implemented using a Box Layout. Each attribute and

it’s value are implemented as separate panels and

http://www.ijesrt.com/

[Alka, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[698-702]

added to the entire tab in the database panel. The

initialize, terminate and update buttons are added to a

separate component which in turn is added to the

panel. The tablesathat display the value for the

versions, connection and status attributes are

dynamically updated as and when the panel receives

a DBStatusUpdate message from the Dynamic

Schema Binding. The user interface is also

programmed to control the enabling/disabling of the

various buttons based on the status of the database

received.

The messages DBStatusrequest and

DBStatusUpdate were implemented as separate

classes just like the other messages in the

edu.uark.rfid.messages package. The

DbStatusRequset is a plain message class with a

unique multicast address. The DBStatusRequest has

public static attributes that helps in indicating the

status of the database. The status itself is an integer

variable that varies from 0 to 6 depending on the

actual status. The Dynamic Schema Binding and the

database panel then access these public members to

determine and set the status. The DBStatusUpdate

also contains an integer version number and a

connection attribute which is an object of the type

String. The message also has accessors and modifiers

to read and set the values for these attributes.

The DBInitialize message had an update flag

added to it. The flag in of the Boolean type and can

take true or false as it’s value. If an update is issued

by the user, this flag is set to true through the

modifiers implemented into the message. If an

initialize is issued, the flag retains it’s default false

value. The flag is then accessed by the Dynamic

3chema Binding. If a true is read, the Dynamic

Schema Binding invokes the update logic, else it

invokes it’s initialize method.

Test Plan
Unit tests were conducted using

AlkaSQLowncustomized database. The new fields

tables added as part of the update were checked

manually through the database administration tool (in

case of postresql). Also ,data present in the database

prior to the update were checked for after execution

of the update to ensure that no data was erased. All

the different scenarios leading to the different status

of the data base were tested exhaustively. Care was

takento cover the entire functionality (as well as the

usability) of this module of code.

Results and discussion
The unit Test were successful and the

outcomes of all the tests were as expected. No data

was found to be lost after the update operation and

the database was in a consistent state irrespective of

the operation performed. All the different scenarios

resulting from the varied database status worked as

expected. The user interface was found to

informative and coherent. Interoperability of multiple

instances of the application did not produce

inconsistent results.

Conclusion
We are applying security on tables not on

the whole database. If we apply security on database

then every time, encrypt and decrypt schema then

efficiency decreases.

References
1. Elmasri, R. and Navathe, S. – Fundamentals

of Database Systems – 2nd Edition.

Benjamin Cummings Publishing Company

Inc., Redwood City, CA (1994), 25-26.

2. Gibbs, S. J. and Tsichritzis, D. - "A Data

Modeling Approach for Office Information

Systems", ACM Transactions on Office

Information Systems, vol.1, no. 4, (1983),

299-319.

3. Hull, R. and King, R. - "Semantic Database

Modeling: Survey, Application and

Research Issues", ACM Computing Surveys,

vol. 19, no. 3, (September 1997), 105-133.

4. King, R. and McLeod, D. - "A Database

Design Methodology and Tool for

Information Systems", ACM Trans. on

Office Information Systems, vol.3, no. 1,

1985.

5. Lerner, B. S. and Habermann, A. N. -

"Beyond Schema Evolution to Database

Reorganization", Proceedings of the

ECOOP, pp. 67-76, Oct. 21-25, 1990

6. Manber, U. - "Introduction to Algorithms -

A Creative Approach", Addison Wesley

Pubs. Reading, Mass., 1989.

http://www.ijesrt.com/

